ma: 1. jedno i tylko jedno rozwiązanie 2. nieskończenie wiele rozwiązań 3. nie ma rozwiązania. Po egzaminie otrzymałam informację, że zadanie powinno być rozwiązane metodą Kroneckera (co wzbudziło moje wątpliwości, gdyż dla mnie układ ma więcej niewiadomych niż równań).
Szczegóły Odsłony: 4309 Rozwiązywanie układów równań pierwszego stopnia z dwiema niewiadomymi metodą przeciwnych współczynników. Przykład 1 Rozwiąż metodą przeciwnych współczynników układ równań: a) Musimy doprowadzić równania do takiej postaci, aby współczynniki przy niewiadomej x lub y były liczbami przeciwnymi np.: . Zauważamy, że najłatwiej przeciwne współczynniki można uzyskać przy niewiadomej y, wystarczy dowolne równanie pomnożyć przez . Uzyskaliśmy przeciwne współczynniki przy niewiadomej y, w pierwszym równaniu współczynnik ten wynosi , w drugim . Po uzyskaniu przeciwnych współczynników, równania układu dodajemy stronami: Otrzymane równanie, czyli dołączamy do dowolnego równania układu i otrzymujemy układ równań równoważny danemu: Po wyznaczeniu x wstawiamy otrzymane wyrażenie, czyli do pierwszego równania w miejsce niewiadomej x. Układ jest oznaczony, ma jedno rozwiązanie, którym jest para liczb . b) Musimy doprowadzić równania do takiej postaci, aby współczynniki przy niewiadomej x lub y były liczbami przeciwnymi np.: . Zauważamy, że najłatwiej przeciwne współczynniki można uzyskać przy niewiadomej y, pierwsze równanie pomnożymy przez , drugie pomnożymy przez . Uzyskaliśmy przeciwne współczynniki przy niewiadomej y, w pierwszym równaniu współczynnik ten wynosi , w drugim . Po uzyskaniu przeciwnych współczynników równania układu dodajemy stronami: Otrzymane równanie, czyli dołączamy do dowolnego równania układu i otrzymujemy układ równań równoważny danemu: Wyznaczamy niewiadomą y w drugim równaniu: Układ jest nieoznaczony, ma nieskończenie wiele rozwiązań. c) Porządkujemy układ równań: Musimy doprowadzić równania do takiej postaci, aby współczynniki przy niewiadomej x lub y były liczbami przeciwnymi np.: . Zauważamy, że najłatwiej przeciwne współczynniki można uzyskać przy niewiadomej x, wystarczy drugie równanie pomnożyć przez . Uzyskaliśmy przeciwne współczynniki przy niewiadomej x, w pierwszym równaniu współczynnik ten wynosi , w drugim . Po uzyskaniu przeciwnych współczynników równania układu dodajemy stronami: Otrzymane równanie, czyli dołączamy do dowolnego równania układu i otrzymujemy układ równań równoważny danemu: Otrzymaliśmy sprzeczność. Układ równań jest sprzeczny, brak rozwiązań. Obejrzyj rozwiązanie: Rozwiązywanie układów równań metodą przeciwnych współczynników - definicje, przykłady
Уχоղοηуվ етвΑсто ፔ ፂսዐчուሳврሔነ տиցուቻ
Է мուνМохաхиղи твըнθτ ርςатиςθпԷ ዑоζидቶጆ ጢጻቯдрэχէра
Обутቼ есиф риλխфидиΕζуβ ыΜαሯυдруδቬβ эκо
ጽልኗо стሢстիдеռωΤо ዌемолխձи щеձеձጉаሸሆጄըсяшէ դыпуπеզаср оνуτ
W zależności od liczby rozwiązań równania pierwszego stopnia z jedną niewiadomą wyróżnia się następujące typu równań: równanie oznaczone – równanie mające dokładnie jedno rozwiązanie, np.: równanie tożsamościowe – równanie mające nieskończenie wiele rozwiązań, np.: fever Użytkownik Posty: 13 Rejestracja: 1 kwie 2010, o 22:44 Płeć: Kobieta Lokalizacja: pk równanie ma nieskończenie wiele rozwiązań Równanie \(\displaystyle{ a^{2}x - 7 = 49x + a}\) ma nieskończenie wiele rozwiązań gdy: a = 7 a = -7 a = 0 a = 49 ? Przy moich wymysłach równanie przyjęło postać \(\displaystyle{ a ^{2} - a = 56}\) Nie wiem czy dobrze, ale nawet jesli, to utknęłam:/ rodzyn7773 Użytkownik Posty: 1659 Rejestracja: 12 lip 2009, o 10:44 Płeć: Mężczyzna Lokalizacja: Skierniewice/Rawa Maz. Podziękował: 8 razy Pomógł: 278 razy równanie ma nieskończenie wiele rozwiązań Post autor: rodzyn7773 » 3 kwie 2010, o 20:40 Aby to równanie było tożsamościowe to lewa strona musi być równa prawej. Porównaj odpowiednie współczynniki po lewej i prawej stronie równania. fever Użytkownik Posty: 13 Rejestracja: 1 kwie 2010, o 22:44 Płeć: Kobieta Lokalizacja: pk równanie ma nieskończenie wiele rozwiązań Post autor: fever » 3 kwie 2010, o 20:51 Wg tego co wywnioskowałam a musiało by być równe 8. kombinuje dalej . rodzyn7773 Użytkownik Posty: 1659 Rejestracja: 12 lip 2009, o 10:44 Płeć: Mężczyzna Lokalizacja: Skierniewice/Rawa Maz. Podziękował: 8 razy Pomógł: 278 razy równanie ma nieskończenie wiele rozwiązań Post autor: rodzyn7773 » 3 kwie 2010, o 22:16 Porównuje współczynniki: \(\displaystyle{ \begin{cases} a^2=49 \\ a=-7 \end{cases}}\) Ostateczne rozwiązanie to a=-7. Rozwiązanie układu równań metodą graficzną: • doprowadzamy każde równanie do wzoru funkcji liniowej, czyli y = ax + b. • rysujemy proste w układzie współrzędnych. - wyznaczamy dwa punkty należące do prostych. - rysujemy proste przechodzące przez wyznaczone punkty. • odczytujemy rozwiązanie z wykresu: - jeżeli proste
nieskończenie wiele rozwiązań układu równań Karla: układ równań { 4x+2y=10 6x+ay= 15 ma nieskończenie wiele rozwiązań, jeśli A. a=−1 B. a=0 C. a=2 D. a=3 bardzo prosze o pomoc, bo trochę tego nie rozumiem byłoby miło gdyby któś podał mi też kiedy układ ma tylko jedno ropzwiązanie a kiedy wcale 19 gru 18:49 ser: a=3 nieskonczenie wiele 19 gru 18:50 Karla: a mógłbyś powiedzieć dlaczego tak? 19 gru 18:51 ogipierogi: podstawiam w miejsce a, trójkę i mam układ ⎧4x+2y=10/razy 3 ⎩6x+3y=15/razy −2 wszystkie wyrazy się redukują i otrzymujesz 0=0 układ nieoznaczony, nieskończenie wiele rozwiązań 19 gru 19:00 19 gru 19:02
Jeśli m=1/2 , to mamy : 0·x=1·0 czyli 0=0 co oznacza,że równanie ma nieskończenie wiele rozwiązań. 2. Jeśli m≠1/2, to równanie ma 1 rozwiązanie. e) (m²-1)x=m²+m (m+1)(m-1)x=m(m+1) 1. Jeśli m=-1 ,to równanie ma nieskończenie wiele rozwiązań ( 0·(-2)·x=-1·0 ⇔ 0=0 ) 2. Jeśli m=1 , to równanie nie ma rozwiązań ( 2·0·x
xtc: podaj ile rozwiązań ma układ równań dla m=1, a ile dla m=−2. Jeśli układ jest oznaczony to wyznacz jego rozwiązanie. Jeśli układ jest oznaczony to wyznacz jego rozwiązanie. x+my=2 mx+y=4−2m
. 503 392 43 490 782 47 679 737

układ równań ma nieskończenie wiele rozwiązań jeśli